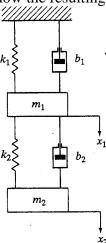
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

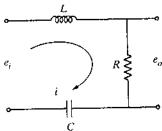
ECEN 3723 Systems Dynamics Fall 2012 Final Exam December 13, 2012

1)	; 2)	; 3)	; 4)	;
Name : _				·

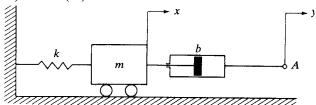

Problem 1: A continuous-time signal x(t) has the Laplace transform

$$X(s) = \frac{s+1}{s^3 + 3s^2 - 5s - 7},$$

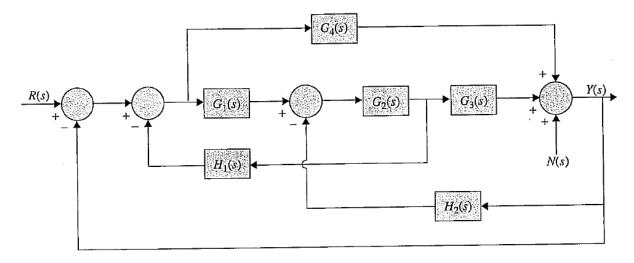
determine the Laplace transform V(s) for


$$v(t) = x(t)\cos 5t.$$

<u>Problem 2</u>: Consider the mechanical system shown below. Using the force-current analogy to derive an *analogous* electrical circuit. Show the resulting circuit diagram.



Problem 3: Consider the electrical circuits shown below. Assume that the input is sinusoidal, $e_i(t) = E_i \cos \omega t$,


what is the steady state current i(t)?

Problem 4: The mechanical system shown below is at rest initially. At t = 0, a unit-step displacement input is applied to point A (i.e., y(t) = u(t)). Assuming that the system remains linear throughout the response period and is *underdamped*, determine the response x(t) as well as the values of x(0+), $\dot{x}(0+)$ and $x(\infty)$.

Problem 5: The block diagram of a feedback control system is shown below:

Use the block diagram reduction technique to find the transfer functions

$$\frac{Y(s)}{R(s)}\Big|_{N(s)=0}$$
 and $\frac{Y(s)}{N(s)}\Big|_{R(s)=0}$.